CYSTATIN C AS A RISK FACTOR OF THROMBOTIC AND BLEEDING EVENTS AFTER ELECTIVE PCI IN PATIENTS WITHOUT SEVERELY DECREASED KIDNEY FUNCTION: THE RESULTS OF 3 YEARS FOLLOW-UP

	Frequency	in groups	KK (95%CI)	RR (95%CI)
Events	$Cys \ge 1500 \text{ ng/ml}$	Cys < 1500 ng/ml	Age and sex adjust	Age, sex, clinical adjust
T1 1 (30.8%	16.2 %	3.8 (1.3-11.7)	2.9(1.0-9.1)
Inrombotic			p=0.02	p=0.05
Thrombotic and	28.5.0/	23.7 %	2.8 (1.1-7.5)	2.3 (0.9-6.3)
bleeding	38.3%		p=0.03	p=0.07

[□] The risk of thrombotic and bleeding events was increased with cystatin C level \geq 1500 ng/ml which was observed in 5.1% of patients

⁵

A. Komarov⁽¹⁾, O. Shakmatova⁽¹⁾, E. Guskova⁽¹⁾, A. Samko⁽¹⁾, A. Dobrovolsky⁽¹⁾, E. Titaeva⁽¹⁾, A. Deev⁽²⁾ and E. Panchenko⁽¹⁾

Aim of the study: to investigate the role of cystatin C as a predictor of adverse prognosis after elective percutaneous coronary intervention in patients without severely decreased kidney function

	Study population			
•	Pts with stable CAD and recent elective PCI (< 7 days)			
•	Preserved kidney function ($GFR_{MDRD} > 30 \text{ml/min}/1.73 \text{m}^2$)			
•	evere heart failure (NYHA functional class III-IV and/or LVEF < 30%) excluded			
•	Optimal medical treatment: DAPT within 6-12 months, ASA and Statins indefinitely,			
	β-blockers and ACE inhibitors / AR blockers (if needed)			
-				
	Methods			
•	Methods Blood samples were taken 3-7 days after PCI and stored at -70 ^o C until analyzed			
•	Methods Blood samples were taken 3-7 days after PCI and stored at -70 ^o C until analyzed Serum cystatin C was measured by ELISA method			
•	Methods Blood samples were taken 3-7 days after PCI and stored at -70 ^o C until analyzed Serum cystatin C was measured by ELISA method Kidney function was calculated by MDRD (GFR _{MDRD}) and creatinine and			
•	Methods Blood samples were taken 3-7 days after PCI and stored at -70 ^o C until analyzed Serum cystatin C was measured by ELISA method Kidney function was calculated by MDRD (GFR _{MDRD}) and creatinine and cystatin - based (GFR _{Cre-Cys}) formulas			
•	Methods Blood samples were taken 3-7 days after PCI and stored at -70 ^o C until analyzed Serum cystatin C was measured by ELISA method Kidney function was calculated by MDRD (GFR _{MDRD}) and creatinine and cystatin - based (GFR _{Cre-Cys}) formulas			
•	Methods Blood samples were taken 3-7 days after PCI and stored at -70° C until analyzed Serum cystatin C was measured by ELISA method Kidney function was calculated by MDRD (GFR MDRD) and creatinine and cystatin - based (GFR _{Cre-Cys}) formulas End points (follow-up 3-7 years)			
•	Methods Blood samples were taken 3-7 days after PCI and stored at -70° C until analyzed Serum cystatin C was measured by ELISA method Kidney function was calculated by MDRD (GFR _{MDRD}) and creatinine and cystatin - based (GFR _{Cre-Cys}) formulas End points (follow-up 3-7 years) Thrombotic events: ACS (STEMI, NSTEMI, UA), ischemic stroke/TIA			

Factors associated with high serum cystatin C level (regression model)

Factor	Fvalue	р
Elderly age	3.3	0.07
Arterial hypertension	2.2	0.14
Low social support	6.7	0.01
History of unstable angina (>1 month)	3.9	0.05
History of CABG (>1 month)	4.0	0.04
Left bundle branch block on ECG	4.4	0.04
Aortic stenosis	3.3	0.07
Multivessel CAD	3.1	0.08
Left ventricular ejection fraction 30- 40%	2.1	0.1
History of bleeding events	3.2	0.1

□ High serum cystatin C was associated with cardiovascular risk factors burden and severity of atherosclerotic disease

Frequency of thrombotic events according to quintiles of GFR_{MDRD} and GFR_{Cre-Cvs}

predictive value: thrombotic events were observed more frequently in lower (Q_1) and upper (Q₅) quintiles of GFR_{Cre-Cvs} distribution 10

Russian Cardiology Research and Production Complex of the Ministry of Healthcare, Moscow, Russian Federation⁽¹⁾, National Research Center for Preventive Medicine of the Ministry of Healthcare, Moscow, Russian Federation⁽²⁾

Study population (risk factors profile)

Gender (male/female), n	254 (205/49)
Age, yrs (M ±SD) *	58.3 ± 9.7
Heart failure, n (%) *	12 (4.7%)
Diabetes mellitus, n (%) *	47 (18.5%)
Arterial hypertension, n (%) *	219 (86.2%)
History of myocardial infarction, n (%) *	132 (52.0%)
History of unstable angina, n (%) *	56 (22.0%)
Peripheral vascular disease, n (%)	17 (6.7%)
History of stroke, n (%)	10 (3.9%)
Total cholesterol, mmol/L (M±SD)	4.8 ± 1.2
Smoking history (%):	
- past, n (%)	99 (39.9%)
- current, n (%)	57 (22.4%)

* - Clinical factors with potential impact on kidney function

Enc	l point		
Thrombotic events			
• AC	S (STEMI, NST	EI	
• Isc	hemic stroke, n		
• Tra	insient ischemic	att	
Sub	total, n		
Blee	eding events		
• Ma	ajor, n		
• Mi	inor, n		
Sub	total, n		
Thr	ombotic and	b	
eve	nts (total)		

□ The composite end point of thrombotic and bleeding events occurred in 24% of pts during a mean follow-up of 3.2 years

Creatinine - based GFR* in patients after elective PCI

Frequency of thrombotic and bleeding events according to quintiles of GFR_{MDRD} and GFR_{Cre-Cvs}

- kidney dysfunction

- quintiles of GFR_{Cre-Cvs} distribution:

Thrombotic and bleeding events after elective PCI (mean follow-up period – 3.2 years)

Conclusion

1. Our cohort study demonstrated that GFR_{MDRD} formula may not be sufficient for prediction of thrombotic and bleeding events in elective PCI patients without severe

2. High serum cystatin C (≥ 1500 ng/ml) was associated with cardiovascular risk factors burden and severity of atherosclerotic disease

3. Serum cystatin C (\geq 1500 ng/ml) was associated with thrombotic and bleeding events (age and sex adjusted RR=2.8; 95%CI 1.1-7.5, p=0.03)

4. Kidney function assessed by $GFR_{Cre-Cvs}$ formula allowed us to reveal pts at high risk of thrombotic and bleeding events. Increased risk was observed in upper and lower

- adjusted RR for the lower quintile ($Q_1 < 62 \text{ ml/min}/1.73\text{m}^2$) was 2.1 (95%CI 1.1-4.1), p=0.04. This result confirmed the sensitivity of GFR_{Cre-Cvs} formula for detection of preclinical kidney disease

- adjusted RR for the upper quintile ($Q_5 > 94 \text{ ml/min}/1.73\text{m}^2$) was 1.8 (95%CI 0.9-3.2), p=0.06. Possible explanation is the influence of non-kidney clinical determinants which may confound the associations between GFR and events